GIS空间插值方法小结
IDW
基本思想是目标离观察点越近则权重越大,受该观察点的影响越大。好处是观察点本身是绝对准确的,而且可以限制插值点的个数。通过power可以确定最近原则对于结果影响的程度。Search radius可以控制插值点的个数。
克里金插值
克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。对于这种方法,原始的输入点可能会发生变化。在数据点多时,结果更加可靠。时, 其内插的结果可信度较高。通过某种函数来模拟他们之间的关系,这样就能够得到空间分布的关系了。接着再用这种空间分布的关系来模拟出所得的数据。
Natural Neighbour
原理是构建voronoi多边形,也就是泰森多边形。首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。个人感觉这种空间插值方法没有实际的意义来支持。
样条函数插值spline
这种方法使用样条函数来对空间点进行插值,它有两个基本条件:
1.表面必须完全通过样本点
2.表面的二阶曲率是最小的。
下面是一篇论文里spline与IDW之间的比较:
从本文实验数据可以看出,IDW 插值主要受幂指数和各采样点属性值变化情况的影响,幂指数越高,其局部影响的程度越高,在IDW搜索半径内,若各个采样点属性值变化较小时,内插结果受幂指数的影响较小;Spline 插值主要受插值类型(Regularized 或Tension)和weight 值的影响,一般Regularize 插值结果比Tension插值结果光滑,在Regularized Spline 插值中,weight 值越高生成的表面越光滑,Tension Spline 插值则相反;总体来看,IDW和SPLINE 插值受采样点范围、采样点密度、采样点属性取值变化以及各自的参数影响,当采样点足够密时,使用IDW插值可以取得良好效果,SPLINE插值则适合那些空间连续变化且光滑的表面的生成。
Topo to Raster
这种方法是用于各种矢量数据的,特别是可以处理等高线数据
Trend
这种方法是用多项式拟合,虽然它不一定在局部很符合输入点,但是在总体上是非常符合的。由Polynominal order来确定多项式的级数,1表示平面,最高是12,这是最复杂的情况。
相关阅读
声明
1.本文所分享的所有需要用户下载使用的内容(包括但不限于软件、数据、图片)来自于网络或者麻辣GIS粉丝自行分享,版权归该下载资源的合法拥有者所有,如有侵权请第一时间联系本站删除。
2.下载内容仅限个人学习使用,请切勿用作商用等其他用途,否则后果自负。
少年好技术!我的GIS都学软件开发去了,你这才是真GIS。
额,实在受之有愧,这也是copy的,我只用过IDW
艾玛,好高端啊
嘿嘿~~~